The deflection δ at some point B of a simply supported beam can be obtained by the following steps:
![Area-moment method of finding deflections in simply supported beam](https://www.mathalino.com/sites/default/files/images/deflection-simply-supported-beam.jpg)
1. Compute
= ZCA
![$ t_{C/A} = \dfrac{1}{EI}(Area_{AC}) \, \bar{X}_C $](https://www.mathalino.com/sites/default/files/tex/filtered/df9a6737ab8b466f11ad78da83f8fdab5c88704c.png)
2. Compute
= ZBA
![$ t_{B/A} = \dfrac{1}{EI}(Area_{AB}) \, \bar{X}_B $](https://www.mathalino.com/sites/default/files/tex/filtered/9eb4022bb4bf3f8a6f57b319784574f6ee197524.png)
3. Slope at support A = O A = t CA /L = ZCA / L
4. Slope at support C = O C = tCA/ L = ZCA / L
5. Solve δ by ratio and proportion (see figure above).
![$ \dfrac{\delta + t_{B/A}}{x} = \dfrac{t_{C/A}}{L} $](https://www.mathalino.com/sites/default/files/tex/filtered/fd29094b635f6db8d72274f089735b11c5edab8e.png)
Problem:1
The middle half of the beam shown in Fig. has a moment of inertia 1.5 times that of the rest of the beam. Find the midspan deflection.
(Hint: Convert the M diagram into an M/EI diagram.)
![Simple beam with different moment of inertia over the span](https://www.mathalino.com/sites/default/files/images/664-665-simple-beam-with-different-inertia.jpg)
Solution :
![M/EI diagram of a simple beam with changing moment of inertia](https://www.mathalino.com/sites/default/files/users/Mathalino/strength-pytel-singer-2/chapter6-beam-deflections/664-simple-beam-different-moment-inertia.jpg)
![$ t_{A/C} = \dfrac{1}{EI}(Area_{AC}) \, \bar{X}_A $](https://www.mathalino.com/sites/default/files/tex/filtered/946b018401ea65294fed8214c1cc581c9ce6a1c3.png)
![$ t_{A/C} = \frac{1}{2}a \left( \dfrac{Pa}{2EI} \right)(\frac{2}{3}a) + a \left( \dfrac{Pa}{3EI} \right)(\frac{3}{2}a) + \frac{1}{2}a \left( \dfrac{2Pa}{3EI} - \dfrac{Pa}{3EI} \right)(\frac{5}{3}a) $](https://www.mathalino.com/sites/default/files/tex/filtered/0b46f459e07db726d6c82b1b126c87c11fb5e190.png)
![$ t_{A/C} = \dfrac{Pa^3}{6EI} + \dfrac{Pa^3}{2EI} + \dfrac{5Pa^3}{18EI} $](https://www.mathalino.com/sites/default/files/tex/filtered/818447064ebb2e9570076d43585913fd0fa332d4.png)
![$ t_{A/C} = \dfrac{17Pa^3}{18EI} $](https://www.mathalino.com/sites/default/files/tex/filtered/6e39013c8cc9f9e5443bb0e0bb8d374061f07ca8.png)
Therefore,
→ answer
![$ \delta_{midspan} = \dfrac{17Pa^3}{18EI} \,\, $](https://www.mathalino.com/sites/default/files/tex/filtered/fa9b951ffa0d92eb3e8a894601b815adb1ef95da.png)
Problem : 2
Determine the value of EIδ at the right end of the overhanging beam shown in Fig.
![Overhang beam with uniform load at the overhang](https://www.mathalino.com/sites/default/files/images/666-overhang-beam-with-rectangular-load.jpg)
Solution :
![Deflection at the free end of an overhanging beam](https://www.mathalino.com/sites/default/files/users/Mathalino/strength-pytel-singer-2/chapter6-beam-deflections/666-elastic-curve-moment-diagram-parts.jpg)
![$ \Sigma M_B = 0 $](https://www.mathalino.com/sites/default/files/tex/filtered/9c8419c4c706ff7fe15243d3d831a5979f5f4aac.png)
![$ aR_A = w_ob(\frac{1}{2}b) $](https://www.mathalino.com/sites/default/files/tex/filtered/5eef9606942a28d555f10c2976c3c430bff3ab1f.png)
![$ R_A = \dfrac{w_ob^2}{2a} $](https://www.mathalino.com/sites/default/files/tex/filtered/78fe654e07647d86e1e0595be53712588f9e7f08.png)
![$ EI \, t_{A/B} = (Area_{AB}) \, \bar{X}_A $](https://www.mathalino.com/sites/default/files/tex/filtered/280337989e7d0102d4bc4f92fcff5eca3c54510a.png)
![$ EI \, t_{A/B} = \frac{1}{2}a(\frac{1}{2}w_ob^2)(\frac{2}{3}a) $](https://www.mathalino.com/sites/default/files/tex/filtered/ddebcc409ab2d3aaffff836a17d82105522fd8dd.png)
![$ EI \, t_{A/B} = \frac{1}{6}w_oa^2b^2 $](https://www.mathalino.com/sites/default/files/tex/filtered/2bfdcb132138f4308d935436e44f483806c5d8e2.png)
![$ EI \, t_{C/B} = (Area_{BC}) \, \bar{X}_C $](https://www.mathalino.com/sites/default/files/tex/filtered/f61a898b085cc489ad1db006e03231e38c2309b5.png)
![$ EI \, t_{C/B} = \frac{1}{3}b(\frac{1}{2}w_ob^2)(\frac{3}{4}b) $](https://www.mathalino.com/sites/default/files/tex/filtered/8389c209567d05f2fb58b7e61632d000f95911b3.png)
![$ EI \, t_{C/B} = \frac{1}{8}w_ob^4 $](https://www.mathalino.com/sites/default/files/tex/filtered/847d40343b191beb970848b0ad97f87642359f29.png)
![$ \dfrac{y_C}{b} = \dfrac{t_{A/B}}{a} $](https://www.mathalino.com/sites/default/files/tex/filtered/d997184141acdcbb24d5e8641f5b0009f49e9ae6.png)
![$ y_C = \dfrac{b}{a}t_{A/B} $](https://www.mathalino.com/sites/default/files/tex/filtered/7a753c1898c12583dde7eee472c24f20dd6dbaf1.png)
![$ EI \, y_C = \dfrac{b}{a}EI \, t_{A/B} $](https://www.mathalino.com/sites/default/files/tex/filtered/9af6bd3508901bec04e82954606d95a5e366082c.png)
![$ EI \, y_C = \dfrac{b}{a}(\frac{1}{6}w_oa^2b^2) $](https://www.mathalino.com/sites/default/files/tex/filtered/eff5ce245399ed40e8799983aa188ae1cff2966d.png)
![$ EI \, y_C = \frac{1}{6}w_oab^3 $](https://www.mathalino.com/sites/default/files/tex/filtered/3aa69812e127d7df4ccc4de8ea0311c158b099a6.png)
![$ \delta_C = y_C + t_{C/B} $](https://www.mathalino.com/sites/default/files/tex/filtered/faba4872eeeb0a861171ee04d8cad2dae156d6b4.png)
![$ EI \, \delta_C = EI \, y_C + EI \, t_{C/B} $](https://www.mathalino.com/sites/default/files/tex/filtered/d7295073abf0deb3bce80d3297333335f8bb32b9.png)
![$ EI \, \delta_C = \frac{1}{6}w_oab^3 + \frac{1}{8}w_ob^4 $](https://www.mathalino.com/sites/default/files/tex/filtered/ed299225239829c2be182a69547d855f3d12bd77.png)
![$ EI \, \delta_C = \frac{1}{24}w_ob^3(4a + 3b) \,\, $](https://www.mathalino.com/sites/default/files/tex/filtered/b050d5cc82c596fc9f22a9f76b611e3339b87e85.png)
Comments
Post a Comment