Problem no.:3
Compute the midspan Deflectin for the beam loaded as shown in Figure.3
Take EI is constant.
![]() |
Figure -3 |
Solution:3
![612-fbd-deflection.jpg](https://www.mathalino.com/sites/default/files/users/Mathalino/strength-pytel-singer-2/chapter6-beam-deflections/612-fbd-deflection.jpg)
![$ \Sigma M_{R2} = 0 $](https://www.mathalino.com/sites/default/files/tex/filtered/036e922608ce31fc889de300f856cd9495eeb491.png)
![$ 6R_1 = 600(3)(3.5) $](https://www.mathalino.com/sites/default/files/tex/filtered/eac7d450faec1e5dac467c2660b8b88152a87c6d.png)
![$ R_1 = 1050 \, \text{N} $](https://www.mathalino.com/sites/default/files/tex/filtered/7f4f7252d68d774153658c26536a3fdeae4e6b3e.png)
![$ 6R_2 = 600(3)(2.5) $](https://www.mathalino.com/sites/default/files/tex/filtered/44b763c62e6e1eea2b160fe143fc87164cb89876.png)
![$ R_2 = 750 \, \text{N} $](https://www.mathalino.com/sites/default/files/tex/filtered/30f6efd001e036a74070f27b126f2662282b02dc.png)
![$ EI \, y'' = 1050x - \frac{1}{2}(600)\langle \, x - 1 \, \rangle^2 + \frac{1}{2}(600)\langle \, x - 4 \, \rangle^2 $](https://www.mathalino.com/sites/default/files/tex/filtered/d048730093ae808bf6a4a1978650de5bb624f83d.png)
![$ EI \, y'' = 1050x - 300\langle \, x - 1 \, \rangle^2 + 300\langle \, x - 4 \, \rangle^2 $](https://www.mathalino.com/sites/default/files/tex/filtered/df567f3e9edf906dc825ac910cb615a9bb6e8661.png)
![$ EI \, y' = 525x^2 - 100\langle \, x - 1 \, \rangle^3 + 100\langle \, x - 4 \, \rangle^3 + C_1 $](https://www.mathalino.com/sites/default/files/tex/filtered/b40ab377a1ade9513978dadac87a724b4d6282db.png)
![$ EI \, y = 175x^3 - 25\langle \, x - 1 \, \rangle^4 + 25\langle \, x - 4 \, \rangle^4 + C_1x + C_2 $](https://www.mathalino.com/sites/default/files/tex/filtered/1f0f8e54bf423a11fcf5b60d55698cb229b3805f.png)
At x = 0, y = 0,
Therefore C2 = 0
At x = 6 m, y = 0
![$ 0 = 175(6^3) - 25(6 - 1)^4 + 25(6 - 4)^4 + 6C_1 $](https://www.mathalino.com/sites/default/files/tex/filtered/889007a9b03c32e348a7bebe9f60a90fc0c48d1f.png)
![$ C_1 = -3762.5 \, \text{N}\cdot\text{m}^2 $](https://www.mathalino.com/sites/default/files/tex/filtered/252be3c3db3cb12a943fe1f73c6c4fb88170176f.png)
Therefore,
![$ EI \, y = 175x^3 - 25\langle \, x - 1 \, \rangle^4 + 25\langle \, x - 4 \, \rangle^4 - 3762.5x $](https://www.mathalino.com/sites/default/files/tex/filtered/3adccb173e34d8e03e822b610f5326b00c34836e.png)
At midspan, x = 3 m
![$ EI \, y_{midspan} = 175(3^3) - 25(3 - 1)^4 - 3762.5(3) $](https://www.mathalino.com/sites/default/files/tex/filtered/5e51fb828f08203b720d1c9a5db65560da3a155e.png)
![$ EI \, y_{midspan} = -6962.5 \, \text{N}\cdot\text{m}^3 $](https://www.mathalino.com/sites/default/files/tex/filtered/8ee4b59b900f242aa76fc37910abea78f57a3c3a.png)
Thus,
![$ EI \, \delta_{midspan} = 6962.5 \, \text{N}\cdot\text{m}^3 \,\, $](https://www.mathalino.com/sites/default/files/tex/filtered/0ff3bc1ce19cb47c9aba5d256239e3ba9d45054a.png)
Problem no :4
A simply supported beam carries a couple M applied as shown in figure 4. Determine the equation of the elastic curve and the deflection at the point of application of the couple. Also write the equations of deflection when the couple will act at the supports.
![]() |
Fig.4 |
Solution :
![$ EI \, y'' = \dfrac{M}{L}x - M \, \langle \, x - a \, \rangle^0 $](https://www.mathalino.com/sites/default/files/tex/filtered/2911f3b3fb145e0d05aee680a6d93d7944c41db2.png)
![$ EI \, y' = \dfrac{M}{2L}x^2 - M \, \langle \, x - a \, \rangle + C_1 $](https://www.mathalino.com/sites/default/files/tex/filtered/47c48cbff3e32265847d64d68c6ea3e9483c98a9.png)
![$ EI \, y = \dfrac{M}{6L}x^3 - \frac{1}{2}M \, \langle \, x - a \, \rangle^2 + C_1x + C_2 $](https://www.mathalino.com/sites/default/files/tex/filtered/0b3095744a7cf48199cc41e8284c81335d0b767c.png)
At x = 0, y = 0, therefore C2 = 0
At x = L, y = 0
![$ 0 = \frac{1}{6}ML^2 - \frac{1}{2}M(L - a)^2 + C_1L $](https://www.mathalino.com/sites/default/files/tex/filtered/71f804bc9ea2385a48c27e7c6a0c50e26e214279.png)
![$ 0 = \frac{1}{6}ML^2 - \frac{1}{2}M(L - a)^2 + C_1L $](https://www.mathalino.com/sites/default/files/tex/filtered/71f804bc9ea2385a48c27e7c6a0c50e26e214279.png)
![$ 0 = \frac{1}{6}ML^2 - \frac{1}{2}M(L^2 - 2La + a^2) + C_1L $](https://www.mathalino.com/sites/default/files/tex/filtered/05b929d91228923a6c7c765106829f114039481c.png)
![$ 0 = \frac{1}{6}ML^2 - \frac{1}{2}ML^2 + MLa - \frac{1}{2}Ma^2 + C_1L $](https://www.mathalino.com/sites/default/files/tex/filtered/38b1db2b97afb6230d72ecea3dec05f8b4a68d70.png)
![$ 0 = -\frac{1}{3}ML^2 + MLa - \frac{1}{2}Ma^2 + C_1L $](https://www.mathalino.com/sites/default/files/tex/filtered/698b3a9dae34724c5f3a74ae5f5a7e73b0e916b7.png)
![$ C_1L = \frac{1}{3}ML^2 - MLa + \frac{1}{2}Ma^2 $](https://www.mathalino.com/sites/default/files/tex/filtered/059f0ef797bd6a9c19e7680ce2e707e83e4b6b43.png)
![$ C_1 = \frac{1}{3}ML - Ma + \dfrac{Ma^2}{2L} $](https://www.mathalino.com/sites/default/files/tex/filtered/667800ab24e7498836806bea4b4d70a9719fbc5b.png)
Therefore,
![$ EI \, y = \dfrac{M}{6L}x^3 - \frac{1}{2}M \, \langle \, x - a \, \rangle^2 + \left( \frac{1}{3}ML - Ma + \dfrac{Ma^2}{2L} \right)x \,\, $](https://www.mathalino.com/sites/default/files/tex/filtered/639952fb3f0a1fed1bc9874b928857b0e01c8403.png)
At x = a
![$ EI \, y = \dfrac{Ma^3}{6L} + \left( \frac{1}{3}ML - Ma + \dfrac{Ma^2}{2L} \right)a $](https://www.mathalino.com/sites/default/files/tex/filtered/cedbf593ff3dc67605d4f084626a4a490895fe86.png)
![$ EI \, y = \dfrac{Ma^3}{6L} + \left( \frac{1}{3}ML - Ma + \dfrac{Ma^2}{2L} \right)a $](https://www.mathalino.com/sites/default/files/tex/filtered/cedbf593ff3dc67605d4f084626a4a490895fe86.png)
![$ EI \, y = \dfrac{2Ma^3}{3L} + \frac{1}{3}MLa - Ma^2 $](https://www.mathalino.com/sites/default/files/tex/filtered/c5fff86b3c398c7249429fad41585221f75a7303.png)
![$ EI \, y = \dfrac{Ma}{3L} (2a^2 + L^2 - 3La) $](https://www.mathalino.com/sites/default/files/tex/filtered/d428395ba11322b60a9e66867b4e8864798e7610.png)
![$ EI \, y = \dfrac{Ma}{3L} (L^2 - 3La + 2a^2) \,\, $](https://www.mathalino.com/sites/default/files/tex/filtered/6b9e851595c305127a6ba3b725475449cb9ec8d6.png)
When a = 0
Moment load is at the left support :
![$ EI \, y = \dfrac{M}{6L}x^3 - \frac{1}{2}M \, \langle \, x - a \, \rangle^2 + \left( \frac{1}{3}ML - Ma + \dfrac{Ma^2}{2L} \right)x $](https://www.mathalino.com/sites/default/files/tex/filtered/a8f9978c3f0204ab0b77baa8b9fc4872796867cc.png)
Moment load is at the left support :
![$ EI \, y = \dfrac{M}{6L}x^3 - \frac{1}{2}M \, \langle \, x - a \, \rangle^2 + \left( \frac{1}{3}ML - Ma + \dfrac{Ma^2}{2L} \right)x $](https://www.mathalino.com/sites/default/files/tex/filtered/a8f9978c3f0204ab0b77baa8b9fc4872796867cc.png)
![$ EI \, y = \dfrac{M}{6L}x^3 - \frac{1}{2}Mx^2 + \frac{1}{3}MLx $](https://www.mathalino.com/sites/default/files/tex/filtered/309550ed7b7b9ad29cdf55ff7a1d5db7e25bfeea.png)
![$ EI \, y = \dfrac{Mx}{6L}(x^2 - 3Lx + 2L^2) $](https://www.mathalino.com/sites/default/files/tex/filtered/ddcf6500fd6fa0e23c5e1da9337c8c181c4317ea.png)
![$ EI \, y = \dfrac{Mx}{6L}(2L^2 - 3Lx + x^2) $](https://www.mathalino.com/sites/default/files/tex/filtered/7375d3451efab21478d8bf8bbaa4282bc8fa025b.png)
![$ EI \, y = \dfrac{Mx}{6L}(L - x)(2L - x) \,\, $](https://www.mathalino.com/sites/default/files/tex/filtered/e8da3d5d896f21f37dc143561ee73f355d137133.png)
When a = L
Moment load is at the right support :
![$ EI \, y = \dfrac{M}{6L}x^3 - \frac{1}{2}M \, \langle \, x - a \, \rangle^2 + \left( \frac{1}{3}ML - Ma + \dfrac{Ma^2}{2L} \right)x $](https://www.mathalino.com/sites/default/files/tex/filtered/a8f9978c3f0204ab0b77baa8b9fc4872796867cc.png)
Moment load is at the right support :
![$ EI \, y = \dfrac{M}{6L}x^3 - \frac{1}{2}M \, \langle \, x - a \, \rangle^2 + \left( \frac{1}{3}ML - Ma + \dfrac{Ma^2}{2L} \right)x $](https://www.mathalino.com/sites/default/files/tex/filtered/a8f9978c3f0204ab0b77baa8b9fc4872796867cc.png)
![$ EI \, y = \dfrac{M}{6L}x^3 + \left( \frac{1}{3}ML - ML + \frac{1}{2}ML \right)x $](https://www.mathalino.com/sites/default/files/tex/filtered/d34c1ca28ff7642128382a23e8386e58105faf82.png)
![$ EI \, y = \dfrac{M}{6L}x^3 - \frac{1}{6}MLx $](https://www.mathalino.com/sites/default/files/tex/filtered/0443e6178e788d09d4936a674e0281d0d0df9bf9.png)
![$ EI \, y = \dfrac{Mx^3 - ML^2x}{6L} $](https://www.mathalino.com/sites/default/files/tex/filtered/b686351cd71cb271865c033eed6f6ea19b098e24.png)
![$ EI \, y = \dfrac{-Mx (-x^2 + L^2)}{6L} $](https://www.mathalino.com/sites/default/files/tex/filtered/e3a5cd4649035ba1ea10d57c9f1363ee6d59f5a5.png)
![$ EI \, y = \dfrac{-MLx (L^2 - x^2)}{6L^2} $](https://www.mathalino.com/sites/default/files/tex/filtered/fb8bfc23ca968a5789b6b3325ea3fc4d9b009f9f.png)
![$ EI \, y = -\dfrac{MLx}{6L^2}(L^2 - x^2) $](https://www.mathalino.com/sites/default/files/tex/filtered/4e9f66ae8a3081066a9c1b7a0bf5ab2517209ed1.png)
![$ EI \, y = -\dfrac{MLx}{6}\left( 1 - \dfrac{x^2}{L^2} \right) \,\, $](https://www.mathalino.com/sites/default/files/tex/filtered/3a56fd1245f023e88431681880e2d7e11c703483.png)
Comments
Post a Comment